Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Macromolecular Rapid...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Macromolecular Rapid Communications
Article . 2011 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Amphiphilic Peptide–Polymer Conjugates with Side‐Conjugation

Authors: Nikhil Dube; Ting Xu; Ting Xu; Andrew D. Presley; Jessica Y. Shu;

Amphiphilic Peptide–Polymer Conjugates with Side‐Conjugation

Abstract

AbstractPolymers conjugated to the exterior of a protein mediate its interactions with surroundings, enhance its processability and can be used to direct its macroscopic assemblies. Most studies to date have focused on peptide–polymer conjugates based on hydrophilic polymers. Engineering amphiphilicity into protein motifs by covalently linking hydrophobic polymers has the potential to interface peptides and proteins with synthetic polymers, organic solvents, and lipids to fabricate functional hybrid materials. Here, we synthesized amphiphilic peptide–polymer conjugates in which a hydrophobic polymer is conjugated to the exterior of a heme‐binding four‐helix bundle and systematically investigated the effects of the hydrophobicity of the conjugated polymer on the peptide structure and the integrity of the heme‐binding pocket. In aqueous solution with surfactants present, the side‐conjugated hydrophobic polymers unfold peptides and may induce an α‐helix to β‐sheet conformational transition. These effects decrease as the polymer becomes less hydrophobic and directly correlate with the polymer hydrophobicity. Upon adding organic solvent to solubilize the hydrophobic polymers, however, the deleterious effects of hydrophobic polymers on the peptide structures can be eliminated. Present studies demonstrate that protein structure is sensitive to the local environment. It is feasible to dissolve amphiphilic peptide–polymer conjugates in organic solvents to enhance their solution processability while maintaining the protein structures. magnified image

Keywords

Chemical Phenomena, Polymers, Molecular Conformation, Proteins, Peptides, Hydrophobic and Hydrophilic Interactions, Protein Structure, Secondary

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Average
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?