Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Mathematische Nachri...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mathematische Nachrichten
Article . 2009 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2009
Data sources: zbMATH Open
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

Weyl quantization of Lebesgue spaces

Authors: BOGGIATTO, Paolo; DE DONNO, Giuseppe; OLIARO, Alessandro;

Weyl quantization of Lebesgue spaces

Abstract

AbstractWe study boundedness and compactness properties for the Weyl quantization with symbols in Lq (ℝ2d ) acting on Lp (ℝd ). This is shown to be equivalent, in suitable Banach space setting, to that of the Wigner transform. We give a short proof by interpolation of Lieb's sufficient conditions for the boundedness of the Wigner transform, proving furthermore that these conditions are also necessary. This yields a complete characterization of boundedness for Weyl operators in Lp setting; compactness follows by approximation. We extend these results defining two scales of spaces, namely L*q (ℝ2d ) and L♯q (R2d ), respectively smaller and larger than the Lq (ℝ2d ),and showing that the Weyl correspondence is bounded on L*q (R2d ) (and yields compact operators), whereas it is not on L♯q (R2d ). We conclude with a remark on weak‐type Lp boundedness (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Country
Italy
Related Organizations
Keywords

Integral operators, Compactness, Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type, Interpolation between normed linear spaces, Weyl operators, \(L^{p}\) spaces, quantization, Quantization; Weyl operators; $L^p$ spaces, Pseudodifferential operators

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!