
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>AbstractFunctionalization of polysulfones by using “Click” chemistry is described for the example of a small fluorescent analyte propargylpyrene. First, PSUs were converted to azido‐functionalized polymers by successive chloromethylation and azidation. Propargylpyrene was prepared independently as a fluorescent click component. Finally, the azido‐functionalized PSUs were coupled with propargylpyrene with high efficiency by copper‐catalyzed azide/alkyne click reactions. The final polymers and intermediates at various stages were characterized by 1H NMR, FT‐IR, GPC, UV‐Vis, and fluorescence spectroscopy techniques. magnified image
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 55 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
