
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script> Copyright policy )
 Copyright policy )pmid: 32881309
AbstractBacterial infectious diseases and bacterial‐infected environments have been threatening the health of human beings all over the world. In view of the increased bacteria resistance caused by overuse or improper use of antibiotics, antibacterial biomaterials are developed as the substitutes for antibiotics in some cases. Among them, antibacterial hydrogels are attracting more and more attention due to easy preparation process and diversity of structures by changing their chemical cross‐linkers via covalent bonds or noncovalent physical interactions, which can endow them with various specific functions such as high toughness and stretchability, injectability, self‐healing, tissue adhesiveness and rapid hemostasis, easy loading and controlled drug release, superior biocompatibility and antioxidation as well as good conductivity. In this review, the recent progress of antibacterial hydrogel including the fabrication methodologies, interior structures, performances, antibacterial mechanisms, and applications of various antibacterial hydrogels is summarized. According to the bacteria‐killing modes of hydrogels, several representative hydrogels such as silver nanoparticles‐based hydrogel, photoresponsive hydrogel including photothermal and photocatalytic, self‐bacteria‐killing hydrogel such as inherent antibacterial peptides and cationic polymers, and antibiotics‐loading hydrogel are focused on. Furthermore, current challenges of antibacterial hydrogels are discussed and future perspectives in this field are also proposed.
Wound Healing, Silver, Polymers and Plastics, Metal Nanoparticles, Bioengineering, Biocompatible Materials, Hydrogels, Bacterial Infections, Antioxidants, Anti-Bacterial Agents, Biomaterials, Delayed-Action Preparations, Materials Chemistry, Humans, Biotechnology
Wound Healing, Silver, Polymers and Plastics, Metal Nanoparticles, Bioengineering, Biocompatible Materials, Hydrogels, Bacterial Infections, Antioxidants, Anti-Bacterial Agents, Biomaterials, Delayed-Action Preparations, Materials Chemistry, Humans, Biotechnology
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 149 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% | 
