Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ LAReferencia - Red F...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of the Science of Food and Agriculture
Article . 2011 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 5 versions
addClaim

State diagram of salmon (Salmo salar) gelatin films

Authors: Diaz, Paulo; Lopez, Daniel; Matiacevich, Silvia; Osorio, Fernando; Enrione, Javier;

State diagram of salmon (Salmo salar) gelatin films

Abstract

AbstractBACKGROUND: A state diagram presents different physical states of a biomaterial as a function of solid content and temperature. Despite their technological interest, little information is available on protein systems such as gelatin/water mixtures. The objective of this work was to develop state diagrams of salmon gelatin (SG) and bovine gelatin (BG) in order to determine maximal freeze concentration parameters (T′g, T′m and Xs′) and to relate possible differences to their biochemical characteristics.RESULTS: Biochemical characterisation of SG showed lower molecular weight and iminoacid concentration compared with BG. Likewise, the glass transition temperature (Tg) was lower for SG at Xs > 0.8, which was associated with its lower molecular weight. Unexpectedly, the depression of freezing temperature (Tf) was greater for SG at Xs > 0.1, which was associated with its higher ash content. Isothermal annealing produced effective values of T′g ≈ − 52 °C, T′m ≈ − 46 °C and X′s ≈ 0.6 for both gelatins. Interestingly, the enthalpy change associated with T′m (ΔH) was significantly higher for SG than for BG after annealing, indicating a higher proportion of ice present at about − 50 °C.CONCLUSION: Maximal freeze concentration parameters were similar between the two gelatins, though differences in biochemical properties were evident. The results show that there are likely different ways of interaction of SG and BG with water. Copyright © 2011 Society of Chemical Industry

Related Organizations
Keywords

Fish Proteins, Calorimetry, Differential Scanning, Imino Acids, Osmolar Concentration, Salmo salar, Temperature, Water, Molecular Weight, Models, Chemical, Fish Products, Freezing, Animals, Gelatin, Transition Temperature, Electrophoresis, Polyacrylamide Gel, Colloids, Skin

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 10%
Top 10%
Top 10%
Green