Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Orthopaed...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Orthopaedic Research®
Article . 1994 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 4 versions
addClaim

Nonuniform distribution of collagen density in human knee ligaments

Authors: Mommersteeg, T. J.; Blankevoort, L.; Kooloos, J. G.; Hendriks, J. C.; Kauer, J. M.; Huiskes, R.;

Nonuniform distribution of collagen density in human knee ligaments

Abstract

AbstractIt is generally recognized that the mechanical properties of soft connective tissues are affected by their structural components. We documented collagen density distributions in human knee ligaments to quantify differences in density within and between these ligaments. In order to explain the variations in mechanical properties within and between different knee ligaments as described in the literature, the distributions of collagen density were correlated with these biomechanical findings. Human knee ligaments were shown to be nonhomogeneous structures with regard to collagen density. The anterior bundles of all ligaments contained significantly more collagen mass per unit of volume than the posterior bundles did. The percentage differences between the anterior and posterior bundles, in relation to the posterior bundles, were about 25% for the anterior cruciate ligament (ACL) and the collateral ligaments and about 10% for the posterior cruciate ligament (PCL). Along the cruciate ligaments, the central segments had higher collagen densities than did segments adjacent to the ligament insertions (ACL 9%, PCL 24%). The collagen density in the ACL was significantly lower than that in the other ligaments. These variations within and between the ligaments correlate well with the variations in mechanical properties described in the literature; however, other structural differences have to be taken into account to fully explain the variations in mechanical properties from the structural components.

Country
Netherlands
Related Organizations
Keywords

Aged, 80 and over, Knee Joint, Middle Aged, Hydroxyproline, Ligaments, Articular, Humans, Posterior Cruciate Ligament, Collagen, Anterior Cruciate Ligament, Aged

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Average
bronze