Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Neuroscie...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Neuroscience Research
Article . 1988 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

Light‐dependent subcellular movement of photoreceptor proteins

Authors: J P, Whelan; J F, McGinnis;

Light‐dependent subcellular movement of photoreceptor proteins

Abstract

AbstractThe intracellular localization of photoreceptor‐specific proteins 33 kd, beta‐transducin, and 48 kd, as determined by immunocytochemistry, is transient and dependent on the lighting environment to which the retina is exposed. Western analysis of the proteins in isolated rod outer segments from mouse retina demonstrates that beta‐transducin actually moves from the outer segment to the inner segement in response to light and that 48 kd moves simultaneously in the opposite direction. The light‐induced movements appear to be initiated by the absorption of light by rhodopsin because red light, which does not bleach rhodopsin, does not produce this redistribution of phototoreceptor proteins. Time course analysis of these movements suggests that the light‐induced shift is detectable at the earliest time examined (30 seconds). The bidirectional movement suggests that the photoreceptor cells have at least two distinct dyneinlike or kinesin‐like translocator molecules that act as microtubule‐based motors. This movement appears to be a basic mechanism by which photoreceptor cells rapidly and radically alter the subcellular concentrations of photoreceptor‐specific proteins, which in turn may affect the rapid changes in membrane potential that occur during phototransduction.

Related Organizations
Keywords

Mice, Inbred BALB C, Rhodopsin, Antibodies, Monoclonal, Immunohistochemistry, Molecular Weight, Mice, Animals, Photoreceptor Cells, Transducin, Retinal Pigments, Photic Stimulation, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    244
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
244
Top 10%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!