
AbstractThe cellular, molecular, and metabolic mechanisms that underlie the development of mesial temporal lobe epilepsy are incompletely understood. Here we review the role of astrocytes in epilepsy development (a.k.a. epileptogenesis), particularly astrocyte pathologies related to: aquaporin 4, the inwardly rectifying potassium channel Kir4.1, monocarboxylate transporters MCT1 and MCT2, excitatory amino acid transporters EAAT1 and EAAT2, and glutamine synthetase. We propose that inhibition, dysfunction or loss of astrocytic glutamine synthetase is an important causative factor for some epilepsies, particularly mesial temporal lobe epilepsy and glioblastoma‐associated epilepsy. We postulate that the regulatory mechanisms of glutamine synthetase as well as the downstream effects of glutamine synthetase dysfunction, represent attractive, new targets for antiepileptogenic interventions. Currently, no antiepileptogenic therapies are available for human use. The discovery of such interventions is important as it will fundamentally change the way we approach epilepsy by preventing the disease from ever becoming manifest after an epileptogenic insult to the brain.
Epilepsy, Temporal Lobe, Glutamate-Ammonia Ligase, Astrocytes, Animals, Brain, Humans
Epilepsy, Temporal Lobe, Glutamate-Ammonia Ligase, Astrocytes, Animals, Brain, Humans
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 64 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
