Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Magnetic ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Magnetic Resonance Imaging
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MRI of the Pancreas

Authors: Kate A. Harrington; Amita Shukla‐Dave; Ramesh Paudyal; Richard K.G. Do;

MRI of the Pancreas

Abstract

MRI has played a critical role in the evaluation of patients with pancreatic pathologies, from screening of patients at high risk for pancreatic cancer to the evaluation of pancreatic cysts and indeterminate pancreatic lesions. The high mortality associated with pancreatic adenocarcinomas has spurred much interest in developing effective screening tools, with MRI using magnetic resonance cholangiopancreatography (MRCP) playing a central role in the hopes of identifying cancers at earlier stages amenable to curative resection. Ongoing efforts to improve the resolution and robustness of imaging of the pancreas using MRI may thus one day reduce the mortality of this deadly disease. However, the increasing use of cross‐sectional imaging has also generated a concomitant clinical conundrum: How to manage incidental pancreatic cystic lesions that are found in over a quarter of patients who undergo MRCP. Efforts to improve the specificity of MRCP for patients with pancreatic cysts and with indeterminate pancreatic masses may be achieved with continued technical advances in MRI, including diffusion‐weighted and T1‐weighted dynamic contrast‐enhanced MRI. However, developments in quantitative MRI of the pancreas remain challenging, due to the small size of the pancreas and its upper abdominal location, adjacent to bowel and below the diaphragm. Further research is needed to improve MRI of the pancreas as a clinical tool, to positively affect the lives of patients with pancreatic abnormalities. This review focuses on various MR techniques such as MRCP, quantitative imaging, and dynamic contrast‐enhanced imaging and their clinical applicability in the imaging of the pancreas, with an emphasis on pancreatic malignant and premalignant lesions.Level of Evidence 5Technical Efficacy Stage 3J. MAGN. RESON. IMAGING 2021;53:347–359.

Related Organizations
Keywords

Pancreatic Neoplasms, Cholangiopancreatography, Magnetic Resonance, Humans, Adenocarcinoma, Magnetic Resonance Imaging, Pancreas

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!