Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Morpholog...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Morphology
Article . 2011 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Placental development and expression of calcium transporting proteins in the extraembryonic membranes of a placentotrophic lizard

Authors: Stinnett, Haley K.; Stewart, James R.; Ecay, Tom W.; Pyles, Rebecca A.; Herbert, Jacquie F.; Thompson, Michael B.;

Placental development and expression of calcium transporting proteins in the extraembryonic membranes of a placentotrophic lizard

Abstract

AbstractPseudemoia pagenstecheri is a viviparous Australian scincid lizard in which the maternal–embryonic placental interface is differentiated into structurally distinct regions. The chorioallantoic placenta contains an elliptical‐shaped region, the placentome, characterized by hypertrophied uterine and embryonic epithelial cells supported by dense vascular networks. The remainder of the chorioallantoic placenta, the paraplacentome, is also highly vascularized but uterine and chorionic epithelia are thin. An omphaloplacenta with hypertrophied epithelia is located in the abembryonic hemisphere of the egg. There is extensive placental transport of organic and inorganic nutrients, e.g., 85–90% of neonatal calcium is received via placental transfer. Calcium uptake by extraembryonic membranes of squamates correlates with expression of the intracellular calcium binding protein, calbindin‐D28K, and plasma membrane calcium ATPase (PMCA) is a marker for active calcium transport. We estimated expression of calbindin‐D28K and PMCA in the chorioallantoic membrane in a developmental series of embryos using immunoblotting and used immunohistochemistry to define the cellular localization of calbindin‐D28K to test the hypotheses that 1) expression of calcium transporting proteins is coincident with placental transport of calcium and 2) the placenta is functionally specialized for calcium transport in regions of structural differentiation. Calbindin‐D28K and PMCA were detected at low levels in early stages of development and increased significantly prior to birth, when embryonic calcium uptake peaks. These data support the hypothesis that placental calcium secretion occurs over an extended interval of gestation, with increasing activity as embryonic demand escalates in late development. In addition, calbindin‐D28K expression is localized in chorionic epithelial cells of the placentome and in the epithelium of the omphalopleure of the omphaloplacenta, which supports the hypothesis that regional structural differentiation in the placenta reflects functional specializations for calcium transport. J. Morphol. 2012. © 2011 Wiley Periodicals, Inc.

Keywords

570, Calbindins, placentation, Immunoblotting, Extraembryonic Membranes, 610, Chorioallantoic Membrane, Epithelium, Plasma Membrane Calcium-Transporting ATPases, S100 Calcium Binding Protein G, Viviparity, Nonmammalian, viviparity, Animals, plasma membrane calcium ATPase, pseudemoia, Uterus, Australia, Biomedical Sciences, Proteins, Biological Transport, Epithelial Cells, Lizards, Chorion, Biological Sciences, calbindin-D 28K, Calcium, Female, Carrier Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!