
AbstractThe chordality of a graph G = (V, E) is defined as the minimum k such that we can write E = E1 ∩ … ∩ Ek with each (V, Ei) a chordal graph. We present several results bounding the value of this generalization of boxicity. Our principal result is that the chordality of a graph is at most its tree width. In particular, series‐parallel graphs have chordality at most 2. Potential strengthenings of this statement fail in that there are planar graphs with chordality 3 and series‐parallel graphs with boxicity 3. © 1993 John Wiley & Sons, Inc.
Graph theory, tree-width, chordality, Paths and cycles
Graph theory, tree-width, chordality, Paths and cycles
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
