
AbstractDefine a geodesic subgraph of a graph to be a subgraph H with the property that any geodesic of two points of H is in H. The trivial geodesic subgraphs are the complete graphs Kn' n ≧ 0, and G itself. We characterize all (finite, simple, connected) graphs with only the trivial geodesic subgraphs, and give an algorithm for their construction. We do this also for triangle‐free graphs.
Graph theory, shortest path, distance convex graph, Structural characterization of families of graphs, Paths and cycles
Graph theory, shortest path, distance convex graph, Structural characterization of families of graphs, Paths and cycles
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
