
arXiv: 1812.07500
AbstractIf a graph has bounded clique number and sufficiently large chromatic number, what can we say about its induced subgraphs? András Gyárfás made a number of challenging conjectures about this in the early 1980s, which have remained open until recently; but in the last few years there has been substantial progress. This is a survey of where we are now.
colouring, Coloring of graphs and hypergraphs, \(\chi\)-boundedness, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO)
colouring, Coloring of graphs and hypergraphs, \(\chi\)-boundedness, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 108 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
