
arXiv: 1403.0479
AbstractWe collect some of our favorite proofs of Brooks' Theorem, highlighting advantages and extensions of each. The proofs illustrate some of the major techniques in graph coloring, such as greedy coloring, Kempe chains, hitting sets, and the Kernel Lemma. We also discuss standard strengthenings of vertex coloring, such as list coloring, online list coloring, and Alon–Tarsi orientations, since analogs of Brooks' Theorem hold in each context. We conclude with two conjectures along the lines of Brooks' Theorem that are much stronger, the Borodin–Kostochka Conjecture and Reed's Conjecture.
list coloring, hitting sets, Brooks theorem, Kempe chains, Coloring of graphs and hypergraphs, 05C15, graph coloring, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO)
list coloring, hitting sets, Brooks theorem, Kempe chains, Coloring of graphs and hypergraphs, 05C15, graph coloring, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
