Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Graph The...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Graph Theory
Article . 2014 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2015
Data sources: zbMATH Open
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Perfect Digraphs

Perfect digraphs
Authors: Stephan Dominique Andres; Winfried Hochstättler;

Perfect Digraphs

Abstract

AbstractThe clique number of a digraph D is the size of the largest bidirectionally complete subdigraph of D. D is perfect if, for any induced subdigraph H of D, the dichromatic number defined by Neumann‐Lara (The dichromatic number of a digraph, J. Combin. Theory Ser. B 33 (1982), 265–270) equals the clique number . Using the Strong Perfect Graph Theorem (M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, The strong perfect graph theorem, Ann. Math. 164 (2006), 51–229) we give a characterization of perfect digraphs by a set of forbidden induced subdigraphs. Modifying a recent proof of Bang‐Jensen et al. (Finding an induced subdivision of a digraph, Theoret. Comput. Sci. 443 (2012), 10–24) we show that the recognition of perfect digraphs is co‐‐complete. It turns out that perfect digraphs are exactly the complements of clique‐acyclic superorientations of perfect graphs. Thus, we obtain as a corollary that complements of perfect digraphs have a kernel, using a result of Boros and Gurvich (Perfect graphs are kernel solvable, Discrete Math. 159 (1996), 35–55). Finally, we prove that it is ‐complete to decide whether a perfect digraph has a kernel.

Related Organizations
Keywords

Coloring of graphs and hypergraphs, Vertex subsets with special properties (dominating sets, independent sets, cliques, etc.), Perfect graphs, dichromatic number, perfect graph, Directed graphs (digraphs), tournaments, perfect digraph, clique-acyclic superorientation, Berge graph, clique number

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!