
doi: 10.1002/jgt.20250
AbstractThe prism over a graph G is the Cartesian product G □ K2 of G with the complete graph K2. If G is hamiltonian, then G□K2 is also hamiltonian but the converse does not hold in general. Having a hamiltonian prism is shown to be an interesting relaxation of being hamiltonian. In this article, we examine classical problems on hamiltonicity of graphs in the context of having a hamiltonian prism. © 2007 Wiley Periodicals, Inc. J Graph Theory 56: 249–269, 2007
Eulerian and Hamiltonian graphs, line graphs, toughness, Hamilton cycles, graph prisms, planar graphs
Eulerian and Hamiltonian graphs, line graphs, toughness, Hamilton cycles, graph prisms, planar graphs
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
