
doi: 10.1002/jgt.20077
AbstractGiven a simple plane graph G, an edge‐face k‐coloring of G is a function ϕ : E(G) ∪ F(G) → {1,…,k} such that, for any two adjacent or incident elements a, b ∈ E(G) ∪ F(G), ϕ(a) ≠ ϕ(b). Let χe(G), χef(G), and Δ(G) denote the edge chromatic number, the edge‐face chromatic number, and the maximum degree of G, respectively. In this paper, we prove that χef(G) = χe(G) = Δ(G) for any 2‐connected simple plane graph G with Δ (G) ≥ 24. © 2005 Wiley Periodicals, Inc. J Graph Theory
Coloring of graphs and hypergraphs, edge-face colouring
Coloring of graphs and hypergraphs, edge-face colouring
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
