Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Radboud Repositoryarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Radboud Repository
Article . 2005
Data sources: Radboud Repository
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Microscopy Research and Technique
Article . 2005 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 4 versions
addClaim

Evaluation of sample spin‐polarization from spin‐polarized scanning tunneling spectroscopy experiments

Authors: Yamada, T.K.; de Parga, A.L.V.; Bischoff, M.M.J.; Mizoguchi, T.; van Kempen, H.;

Evaluation of sample spin‐polarization from spin‐polarized scanning tunneling spectroscopy experiments

Abstract

AbstractSpin‐polarized scanning tunneling microscopy has produced a great amount of images presenting magnetic contrast between different magnetic domains with an unsurpassed spatial resolution but getting values like the surface polarization has proven to be a difficult task. We will discuss in detail how to extract this information for the case of manganese layers grown on Fe(001) whiskers. Mn layers adopt a body‐centered‐tetragonal (bct) structure when they are grown on the Fe(001) surface at room temperature. The Mn layers show an antiferromagnetic coupling between the layers. Comparing our spin‐polarized scanning tunneling spectra measured with Fe‐coated W tips with spin‐resolved band structure calculations, we are able to find the value of the sample surface polarization. Also discussed is a method to change the tip magnetization. Finally, the magnetic structure around a screw dislocation on the surface is reviewed. Microsc. Res. Tech. 66:93–104, 2005. © 2005 Wiley‐Liss, Inc.

Country
Netherlands
Keywords

Magnetics, Manganese, Microscopy, Scanning Tunneling, Scanning Probe Microscopy, Iron, Models, Theoretical, Tungsten

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!