Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Computati...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Computational Chemistry
Article . 2004 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Classical force field parameters for the heme prosthetic group of cytochrome c

Authors: Zaida Luthey-Schulten; Jerome Baudry; Emad Tajkhorshid; Felix Autenrieth;

Classical force field parameters for the heme prosthetic group of cytochrome c

Abstract

AbstractAccurate force fields are essential for describing biological systems in a molecular dynamics simulation. To analyze the docking of the small redox protein cytochrome c (cyt c) requires simulation parameters for the heme in both the reduced and oxidized states. This work presents parameters for the partial charges and geometries for the heme in both redox states with ligands appropriate to cyt c. The parameters are based on both protein X‐ray structures and ab initio density functional theory (DFT) geometry optimizations at the B3LYP/6‐31G* level. The simulations with the new parameter set reproduce the geometries of the X‐ray structures and the interaction energies between water and heme prosthetic group obtained from B3LYP/6‐31G* calculations. The parameter set developed here will provide new insights into docking processes of heme containing redox proteins. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 1613–1622, 2004

Keywords

Models, Molecular, Molecular Structure, Static Electricity, Molecular Conformation, Cytochromes c, Heme, Crystallography, X-Ray, Thermodynamics, Computer Simulation, Oxidation-Reduction, Algorithms

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    192
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
192
Top 1%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!