Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cellular ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cellular Biochemistry
Article . 2015 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

Flavonol Regulation in Tumor Cells

Authors: Michael A, Lea;

Flavonol Regulation in Tumor Cells

Abstract

ABSTRACTFlavonols comprise a group of flavonoid molecules that are widely distributes in fruits and vegetables. There is epidemiological data to suggest that consumption of flavonols can be accompanied by decreased cancer incidence. The anti‐oxidant activity of flavonols may have an important role in preventing carcinogenesis. Therapeutic potential of flavonols is indicated by their growth inhibitory action accompanied by a decrease in several hallmarks of cancer such as resistance to apoptosis. Multiple mechanisms of action have been reported for the action of flavonols on cancer cells. Particular emphasis has been directed to inhibitory effects on several protein kinases and on the potential for prooxidant effects. The diversity of actions presents a problem in trying to elucidate primary and secondary effects but it may be a strength of the therapeutic potential of flavonols that it renders development of resistance more difficult for cancer cells. Cancer chemotherapy is usually characterized by the use of drug combinations. Some additive or synergistic combinations have been identified for flavonols and this is an area of ongoing investigation. As with other polyphenolic molecules there have been questions of cellular uptake and bioavailability. Several investigations have been and are being conducted to modify the structures of flavonols with the goal of increasing bioavailability. At present many investigators are sufficiently encouraged by past observations that they are responding to the challenge to optimize the dietary and therapeutic use of flavonols in cancer prevention and treatment. J. Cell. Biochem. 116: 1190–1194, 2015. © 2015 Wiley Periodicals, Inc.

Keywords

Gene Expression Regulation, Neoplastic, Structure-Activity Relationship, Flavonols, Plant Extracts, Neoplasms, Biological Availability, Humans, Antineoplastic Agents, Plants, Antioxidants

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Average
Top 10%
Related to Research communities
Cancer Research
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!