Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cellular ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cellular Biochemistry
Article . 1993 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

Differential distribution of vesicular carriers during differentiation and synapse formation

Authors: S, Bursztajn; Y J, Jong; S A, Berman;

Differential distribution of vesicular carriers during differentiation and synapse formation

Abstract

AbstractCoated and noncoated vesicles participate in cellular protein transport. Both acetylcholine receptors (AChR) and acetylcholinesterase (AChE) are transported via coated vesicles, some of which accumulate beneath the neuromuscular synapse where AChRs cluster. To investigate the mechanisms by which these proteins are transported during postsynaptic remodeling, we purified coated vesicles from the bovine brain via column chromatography (Sephacryl S‐1000) and raised monoclonal antibodies to epitopes of the vesicular membranes enriched in AChE. We assayed for AChE (coated vesicle enriched), hexosaminidase (lysosomal contaminants), NADH cytochrome C reductase (mitochondrial containing), and protein and demonstrated electron microscopically using negative staining that the vesicular fraction contained 95% pure coated vesicles. We then injected coated vesicle fractions and the fractions from which the coat was removed intraperitoneally into mice and obtained three monoclonal antibodies: C‐33, C‐172, and F‐22. On immunoblots of purified vesicles and cultured skeletal muscle, mAb C‐33 stained a 180 Kd band and mAb C‐172 stained a 100 kd band. MAb F‐22 stained 50 kd and 55 kd bands and was not characterized further. Immunofluorescent microscopy with C‐33 and C‐172 revealed punctate fluorescence whose distribution depends upon the stage of myotube development. Four days after plating, myotubes showed punctate fluorescence throughout the myotube, whereas those stained 8 days after plating showed a punctate perinuclear distribution. Myotubes innervated by ciliary neurons show punctate fluorescence limited to the nuclear periphery and most concentrated around nuclei which line up beneath neuronal processes. This differential vesicular distribution, observed during myotube differentiation and innervation, suggests that these vesicles participate in vesicular membrane traffic.

Related Organizations
Keywords

Muscles, Immunoblotting, Antibodies, Monoclonal, Brain, Fluorescent Antibody Technique, Biological Transport, Cell Differentiation, Coated Pits, Cell-Membrane, Nerve Tissue Proteins, Cell Fractionation, Mice, Microscopy, Electron, Microscopy, Fluorescence, Synapses, Acetylcholinesterase, Animals, Cattle, Receptors, Cholinergic, Chickens

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!