<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 8496246
AbstractThere is strong public interest in the possibility of health effects associated with exposure to extremely low frequency (elf) electromagnetic (EM) fields. Epidemiological studies suggest a probable, but controversial, link between exposure to elf EM fields and increased incidence of some cancers in both children and adults. There are hundreds of scientific studies that have tested the effects of elf EM fields on cells and whole animals. A growing number of reports show that exposure to elf EM fields can produce a large array of effects on cells. Of interest is an increase in specific transcripts in cultured cells exposed to EM fields. The interaction mechanism with cells, however, remains elusive. Evidence is presented for a model based on cell surface interactions with EM fields.
Electromagnetic Fields, Neoplasms, Radiation-Induced, Cells, Proto-Oncogenes, Animals, Humans, Biological Transport, Calcium, Second Messenger Systems
Electromagnetic Fields, Neoplasms, Radiation-Induced, Cells, Proto-Oncogenes, Animals, Humans, Biological Transport, Calcium, Second Messenger Systems
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 76 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |