
AbstractHeart valve (HV) diseases are among the leading causes of death and continue to threaten public health worldwide. The current clinical options for HV replacement include mechanical and biological prostheses. However, an ongoing problem with current HV prostheses is their failure to integrate with the host tissue and their inability grow and remodel within the body. Tissue engineered heart valves (TEHVs) are a promising solution to these problems, as they are able to grow and remodel somatically with the rest of the body. Recently, decellularized HVs have demonstrated great potential as valve replacements because they are tissue specific, but recellularization is still a challenge due to the dense HV extracellular matrix (ECM) network. In this proof‐of‐concept work, we decellularized porcine mitral valve chordae, aortic valve leaflets, and mitral valve leaflets and processed them into injectable hydrogels that could accommodate any geometry. While the three valvular ECMs contained various amounts of collagen, they displayed similar glycosaminoglycan contents. The hydrogels had similar nanofibrous structures and gelation kinetics with various compressive strengths. When encapsulated with NIH 3 T3 fibroblasts, all the hydrogels supported cell survivals up to 7 days. Decellularized HV ECM hydrogels may show promising potential HV tissue engineering applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1732–1740, 2019.
Tissue Engineering, Tissue Scaffolds, Swine, Biocompatible Materials, Hydrogels, 3T3 Cells, Pepsin A, Extracellular Matrix, Injections, Mice, Implants, Experimental, Aortic Valve, Heart Valve Prosthesis, Animals, Mitral Valve, Collagen, Cell Proliferation, Glycosaminoglycans
Tissue Engineering, Tissue Scaffolds, Swine, Biocompatible Materials, Hydrogels, 3T3 Cells, Pepsin A, Extracellular Matrix, Injections, Mice, Implants, Experimental, Aortic Valve, Heart Valve Prosthesis, Animals, Mitral Valve, Collagen, Cell Proliferation, Glycosaminoglycans
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
