Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biomedica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Biomedical Materials Research Part A
Article . 2012 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Encapsulation of protein microfiber networks supporting pancreatic islets

Authors: Joseph A. M. Steele; Euridice Carmona; Ronald J. Neufeld; Annelise E. Barron; Jean-Pierre Hallé;

Encapsulation of protein microfiber networks supporting pancreatic islets

Abstract

AbstractNetworks of discrete, genipin‐crosslinked gelatin microfibers enveloping pancreatic islets were incorporated within barium alginate microcapsules. This novel technique enabled encapsulation of cellular aggregates in a spherical fibrous matrix <300 μm in diameter. Microfibers were produced by vortex‐drawn extrusion within an alginate support matrix. Optimization culminated in a hydrated fiber diameter of 22.3 ± 0.4 μm, a significant reduction relative to that available through current gelatin microfiber spinning techniques, while making the process more reliable and less labor intensive. Microfibers were encapsulated at 40 vol % within 294 ± 4 μm 1.6% barium alginate microparticles by electrostatic‐mediated dropwise extrusion. Pancreatic islets extracted from Sprague Dawley rats were encapsulated within the microparticles and analyzed over 21 days. Acridine orange and propidium iodide fluorescent viability staining and light microscopy indicated a significant increase in viability for islets within the fiber‐embedded particles relative to fiber‐free controls at days 7, 14, and 21. The fiber‐embedded system also promoted cellular aggregate cohesion, reducing the incidence of dispersed islet morphologies within the capsules from 31 to 8% at day 21. Further enquiry into benefits of islet encapsulation within a protein fiber network will be the subject of future investigation. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 100A:3384–3391, 2012.

Related Organizations
Keywords

Male, Tissue Survival, Static Electricity, Adhesiveness, Capsules, Rats, Rats, Sprague-Dawley, Islets of Langerhans, Cross-Linking Reagents, Microscopy, Electron, Scanning, Animals, Gelatin, Iridoids

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Average
bronze