Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Biomedica...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Biomedical Materials Research
Article . 1979 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

Heparinized styrene‐butadiene‐styrene elastomers

Authors: M F, Goosen; M V, Sefton;

Heparinized styrene‐butadiene‐styrene elastomers

Abstract

AbstractA heparinized high‐strength elastomer has been developed which is potentially useful as a nonthrombogenic vascular prosthesis. A surface hydroxylated styrene‐butadiene‐styrene (SBS) block copolymer with at least 40% extent of reaction after glow‐discharge cleaning was coated with a 20% acetylated polyvinyl alcohol/heparin mixture containing glutaraldehyde and magnesium chloride. After curing at 80°C for 100 min, the polyvinyl alcohol, heparin, and hydroxylated SBS were covalently bound to each other by acetal bridges. The effects of the various substrate and coating parameters were optimized to achieve very strong adhesion between the coating layer and the surface hydroxylated SBS. Heparin was not leached from the surface of the new material using 3M saline at pH 7.4 despite a detection limit of 10−5 μg heparin/cm2 min. Prolonged partial thromboplastin times of greater than 1200 sec were observed (control: PTT = 120 sec). Preliminary ex vivo testing using a simple arteriovenous shunt in the leg of a rabbit showed good thromboresistance. The heparinized SBS shunt chamber remained patent for more than two hours without desorption of heparin. It was concluded that surface hydroxylated SBS heparinized by acetal coupling owed its thromboresistance to the heparin covalently bound to the surface and not to a microenvironment of heparin in solution at the blood/material interface.

Related Organizations
Keywords

Chemical Phenomena, Chemistry, Physical, Heparin, Surface Properties, Biocompatible Materials, Thrombosis, Hydroxylation, Elasticity, Blood Vessel Prosthesis, Styrenes, Thromboplastin, Blood, Platelet Adhesiveness, Butadienes, Humans, Polystyrenes, Stress, Mechanical

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    69
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
69
Average
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!