
doi: 10.1002/jae.688
handle: 11245/1.203158
AbstractMultivariate GARCH specifications are typically determined by means of practical considerations such as the ease of estimation, which often results in a serious loss of generality. A new type of multivariate GARCH model is proposed, in which potentially large covariance matrices can be parameterized with a fairly large degree of freedom while estimation of the parameters remains feasible. The model can be seen as a natural generalization of the O‐GARCH model, while it is nested in the more general BEKK model. In order to avoid convergence difficulties of estimation algorithms, we propose to exploit unconditional information first, so that the number of parameters that need to be estimated by means of conditional information is more than halved. Both artificial and empirical examples are included to illustrate the model. Copyright © 2002 John Wiley & Sons, Ltd.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 313 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
