Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Hepatologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hepatology
Article . 2022 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Hepatology
Article . 2022
versions View all 2 versions
addClaim

Biology of IDH mutant cholangiocarcinoma

Authors: Meng‐Ju Wu; Lei Shi; Joshua Merritt; Andrew X. Zhu; Nabeel Bardeesy;

Biology of IDH mutant cholangiocarcinoma

Abstract

Abstract Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are the most frequently mutated metabolic genes across human cancers. These hotspot gain‐of‐function mutations cause the IDH enzyme to aberrantly generate high levels of the oncometabolite, R‐2‐hydroxyglutarate, which competitively inhibits enzymes that regulate epigenetics, DNA repair, metabolism, and other processes. Among epithelial malignancies, IDH mutations are particularly common in intrahepatic cholangiocarcinoma (iCCA). Importantly, pharmacological inhibition of mutant IDH (mIDH) 1 delays progression of mIDH1 iCCA, indicating a role for this oncogene in tumor maintenance. However, not all patients receive clinical benefit, and those who do typically show stable disease rather than significant tumor regressions. The elucidation of the oncogenic functions of mIDH is needed to inform strategies that can more effectively harness mIDH as a therapeutic target. This review will discuss the biology of mIDH iCCA, including roles of mIDH in blocking cell differentiation programs and suppressing antitumor immunity, and the potential relevance of these effects to mIDH1‐targeted therapy. We also cover opportunities for synthetic lethal therapeutic interactions that harness the altered cell state provoked by mIDH1 rather than inhibiting the mutant enzyme. Finally, we highlight key outstanding questions in the biology of this fascinating and incompletely understood oncogene.

Related Organizations
Keywords

Cholangiocarcinoma, Bile Ducts, Intrahepatic, Bile Duct Neoplasms, Mutation, Humans, Biology, Isocitrate Dehydrogenase

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!