Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hepatologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hepatology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hepatology
Article . 2014 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
Hepatology
Article . 2015
versions View all 2 versions
addClaim

Prevention of spontaneous hepatocarcinogenesis in farnesoid X receptor–null mice by intestinal‐specific farnesoid X receptor reactivation

Authors: Chiara Degirolamo; Salvatore Modica; Michele Vacca; Giuseppe Di Tullio; Annalisa Morgano; Andria D'Orazio; Kristina Kannisto; +2 Authors

Prevention of spontaneous hepatocarcinogenesis in farnesoid X receptor–null mice by intestinal‐specific farnesoid X receptor reactivation

Abstract

Farnesoid X receptor (FXR) is the master regulator of bile acid (BA) homeostasis because it controls BA synthesis, influx, efflux, and detoxification in the gut/liver axis. Deregulation of BA homeostasis has been linked to hepatocellular carcinoma (HCC), and spontaneous hepatocarcinogenesis has been observed in FXR‐null mice. This dreaded liver neoplasm has been associated with both FXR gene deletion and BA‐mediated metabolic abnormalities after inactivation of FXR transcriptional activity. In the present study, we addressed the hypothesis that intestinal selective FXR reactivation would be sufficient to restore the fibroblast growth factor 15 (FGF15)/cholesterol‐7alpha‐hydroxylase (Cyp7a1) enterohepatic axis and eventually provide protection against HCC. To this end, we generated FXR‐null mice with re‐expression of constitutively active FXR in enterocytes (FXR −/− iVP16FXR) and corresponding control mice (FXR −/− iVP16). In FXR‐null mice, intestinal selective FXR reactivation normalized BA enterohepatic circulation along with up‐regulation of intestinal FXR transcriptome and reduction of hepatic BA synthesis. At 16 months of age, intestinal FXR reactivation protected FXR‐null mice from spontaneous HCC development that occurred in otherwise FXR‐null mice. Activation of intestinal FXR conferred hepatoprotection by restoring hepatic homeostasis, limiting cellular proliferation through reduced cyclinD1 expression, decreasing hepatic inflammation and fibrosis (decreased signal transducer and activator of transcription 3 activation and curtailed collagen deposition). Conclusion : Intestinal FXR is sufficient to restore BA homeostasis through the FGF15 axis and prevent progression of liver damage to HCC even in the absence of hepatic FXR. Intestinal‐selective FXR modulators could stand as potential therapeutic intervention to prevent this devastating hepatic malignancy, even if carrying a somatic FXR mutation. (H epatology 2015;61:161–170)

Keywords

Male, Aging, Carcinoma, Hepatocellular, Liver Neoplasms, Down-Regulation, Receptors, Cytoplasmic and Nuclear, Mice, Transgenic, Bile Acids and Salts, Fibroblast Growth Factors, Genes, cdc, Mice, Inbred C57BL, Receptors, Aryl Hydrocarbon, Basic Helix-Loop-Helix Transcription Factors, Animals, Homeostasis, Female, Intestinal Mucosa

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    107
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
107
Top 1%
Top 10%
Top 1%
hybrid