Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hepatologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hepatology
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hepatology
Article . 2004 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Seminars in Liver Disease
Article . 2005 . Peer-reviewed
Data sources: Crossref
Hepatology
Article . 2004
versions View all 6 versions
addClaim

Non- HFE hemochromatosis

Authors: PIETRANGELO, Antonello;

Non- HFE hemochromatosis

Abstract

The term "non-HFE hemochromatosis" (non-HFE HC) refers to several phenotypically similar but genetically distinct forms of hereditary hemochromatosis affecting individuals without pathogenic mutations of HFE. The involved genes are, sinsu strictu, transferrin receptor 2 (TfR2), hemojuvelin (HJV), and hepcidin (HAMP). Non-HFE HC share common pathogenic and clinical features with HFE HC. However, depending on the role of the affected gene in iron trafficking, the clinical onset may be earlier and phenotypic expressivity more severe than classic HC. Other forms of hereditary iron overload have distinct pathogenesis and phenotype. The most prevalent of these forms is "ferroportin disease," characterized by autosomal dominant trait, predominant reticuloendothelial cell iron overload, and mild organ damage. Non-HFE HC gene products, while responsible for rarer cases of HC as compared with HFE, are much more central than HFE in human iron homeostasis and understanding their function will greatly advance our comprehension of iron trafficking in health and disease.

Country
Italy
Keywords

hemochromatosis; transferrin receptor 2; hemojuvelin; hepcidin, Iron, Histocompatibility Antigens Class I, Membrane Proteins, GPI-Linked Proteins, Ferroportin, Phenotype, Hepcidins, Mutation, Receptors, Transferrin, IRON RESPONSIVE ELEMENT; AUTOSOMAL DOMINANT HEMOCHROMATOSIS; ANTIMICROBIAL PEPTIDE HEPCIDIN; TRANSFERRIN RECEPTOR 2 GENE; FERRITIN MESSENGER RNA; HEREDITARY HEMOCHROMATOSIS; JUVENILE HEMOCHROMATOSIS; FERROPORTIN 1 GENE; IDIOPATHIC HEMOCHROMATOSIS; COMMON MUTATION, Humans, Hemochromatosis, Hemochromatosis Protein, Cation Transport Proteins, Antimicrobial Cationic Peptides

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    180
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 80
  • 80
    views
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
180
Top 10%
Top 1%
Top 1%
80
bronze
Related to Research communities