Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Human Brain Mappingarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Human Brain Mapping
Article . 2022 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

Aberrant dynamic structure–function relationship of rich‐club organization in treatment‐naïve newly diagnosed juvenile myoclonic epilepsy

Authors: Guangyao Liu; Weihao Zheng; Hong Liu; Man Guo; Laiyang Ma; Wanjun Hu; Ming Ke; +3 Authors

Aberrant dynamic structure–function relationship of rich‐club organization in treatment‐naïve newly diagnosed juvenile myoclonic epilepsy

Abstract

AbstractNeuroimaging studies have shown that juvenile myoclonic epilepsy (JME) is characterized by impaired brain networks. However, few studies have investigated the potential disruptions in rich‐club organization—a core feature of the brain networks. Moreover, it is unclear how structure–function relationships dynamically change over time in JME. Here, we quantify the anatomical rich‐club organization and dynamic structural and functional connectivity (SC–FC) coupling in 47 treatment‐naïve newly diagnosed patients with JME and 40 matched healthy controls. Dynamic functional network efficiency and its association with SC–FC coupling were also calculated to examine the supporting of structure–function relationship to brain information transfer. The results showed that the anatomical rich‐club organization was disrupted in the patient group, along with decreased connectivity strength among rich‐club hub nodes. Furthermore, reduced SC–FC coupling in rich‐club organization of the patients was found in two functionally independent dynamic states, that is the functional segregation state (State 1) and the strong somatomotor‐cognitive control interaction state (State 5); and the latter was significantly associated with disease severity. In addition, the relationships between SC–FC coupling of hub nodes connections and functional network efficiency in State 1 were found to be absent in patients. The aberrant dynamic SC–FC coupling of rich‐club organization suggests a selective influence of densely interconnected network core in patients with JME at the early phase of the disease, offering new insights and potential biomarkers into the underlying neurodevelopmental basis of behavioral and cognitive impairments observed in JME.

Related Organizations
Keywords

Structure-Activity Relationship, Myoclonic Epilepsy, Juvenile, Brain, Humans, Magnetic Resonance Imaging, Research Articles

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%
Green
gold