Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Gliaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Glia
Article . 1994 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Glia
Article . 1994
versions View all 2 versions
addClaim

Astrocytic GABA receptors

Authors: D D, Fraser; L A, Mudrick-Donnon; B A, MacVicar;

Astrocytic GABA receptors

Abstract

AbstractGABA receptors are distributed widely throughout the central nervous system on a variety of cell types. It has become increasingly clear that astrocytes, both in cell culture and tissue slices, express abundant GABAA receptors. In astrocytes, GABA activates Cl−‐specific channels that are modulated by barbiturates and benzodiazepines; however, the neuronal inverse agonist methyl‐4‐ethyl‐6, 7‐dimethoxy‐β‐carboline‐3‐car‐boxylate enhances the current in a subpopulation of astrocytes. The properties of astrocytic GABAA receptors, therefore, are remarkably similar to their neuronal counterparts, with only a few pharmacological exceptions. In stellate glial cells of the pituitary pars intermedia, GABA released from neuronal terminals activates postsynaptic potentials directly. The physiological significance of astrocytic GABAA‐receptor activation remains unknown, but it may be involved in extracellular ion homeostasis and pH regulation. At present, there is considerably less evidence for the presence of GABAB receptors on astrocytes. The data that have emerged, however, indicate a prominent role for second‐messenger regulation by this receptor. © 1994 Wiley‐Liss, Inc.

Related Organizations
Keywords

Neurons, Baclofen, Muscimol, Neurotoxins, Nerve Tissue Proteins, Hippocampus, Second Messenger Systems, Membrane Potentials, Rats, GABA Antagonists, Benzodiazepines, Receptors, GABA, Chloride Channels, Astrocytes, Pituitary Gland, Barbiturates, Cats, Animals, Humans, Carbolines

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    117
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
117
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!