Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Gliaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Glia
Article . 2012 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Glia
Article . 2013
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Purinergic receptors in microglia: Functional modal shifts of microglia mediated by P2 and P1 receptors

Authors: Schuichi, Koizumi; Keiko, Ohsawa; Kazuhide, Inoue; Shinichi, Kohsaka;

Purinergic receptors in microglia: Functional modal shifts of microglia mediated by P2 and P1 receptors

Abstract

AbstractMicroglia are sensitive to environmental changes and are immediately transformed into several phenotypes. For such dynamic “modal shifts”, purinergic receptors have central roles. When microglia sense ATP/ADP leaked from injured cells by P2Y12 receptors, they are transformed into a moving phenotype, showing process extension and migration toward the injured sites. Microglia upregulate adenosine A2A receptors, by which they retract the processes showing an amoeboid‐shaped, activated phenotype. Microglia also upregulate P2Y6 receptors, and if they meet UDP leaked from dead cells, microglia start to engulf and eat the dead cells as a phagocytic phenotype. The P2Y12 receptor‐mediated responses are modulated by other P2 or P1 receptors. In contrast, the P2Y6 receptor‐mediated responses were not influenced by P2Y12 receptors and vice versa. Microglia appear to use purinergic signals either cooperatively or distinctively to cause their modal shifts. © 2012 Wiley Periodicals, Inc.

Keywords

Cell Movement, Receptors, Purinergic P2, Receptors, Purinergic P1, Animals, Brain, Humans, Microglia

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    174
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
174
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!