Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Glia
Article . 2010 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Glia
Article . 2011
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Peripheral contributions to olfactory bulb cell populations (migrations towards the olfactory bulb)

Authors: Blanchart, Albert; Martín-López, Eduardo; Carlos, Juan A. de; López-Mascaraque, Laura;

Peripheral contributions to olfactory bulb cell populations (migrations towards the olfactory bulb)

Abstract

AbstractThe olfactory system represents one of the most suitable models to study interactions between the peripheral and central nervous systems. The developing olfactory epithelium (olfactory placode and pit) gives rise to several cell populations that migrate towards the telencephalic vesicle. One of these cell populations, called the Migratory Mass (MM), accompanies the first emerging olfactory axons from the olfactory placode, but the fate of these cells and their contribution to the Olfactory Bulb (OB) populations has not been properly addressed. To asses this issue we performed ultrasound‐guided in utero retroviral injections at embryonic day (E) 11 revealing the MM as an early source of Olfactory Ensheathing Cells in later postnatal stages. Employing a wide number of antibodies to identify the nature of the infected cells we described that those cells generated within the MM at E11 belong to different cell populations both in the mesenchyma, where they envelop olfactory axons and express the most common glial markers, and in the olfactory bulb, where they are restricted to the Olfactory Nerve and Glomerular layers. Thus, the data reveal the existence of a novel progenitor class within the MM, potentially derived from the olfactory placode which gives rise to different neural cell population including some CNS neurons, glia and olfactory ensheathing cells. © 2010 Wiley‐Liss, Inc.

Keywords

Neurons, Green Fluorescent Proteins, Age Factors, Gene Transfer Techniques, Gene Expression Regulation, Developmental, Nerve Tissue Proteins, Olfactory Pathways, Embryo, Mammalian, Olfactory Bulb, Mice, Prosencephalon, Animals, Newborn, Bromodeoxyuridine, Cell Movement, Pregnancy, Animals, Female, Neuroglia, Cells, Cultured, Cell Proliferation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 20
    download downloads 25
  • 20
    views
    25
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
26
Top 10%
Average
Top 10%
20
25
Green