Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Genetic Epidemiologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Genetic Epidemiology
Article . 2004 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Algorithms for inferring haplotypes

Authors: Tianhua, Niu;

Algorithms for inferring haplotypes

Abstract

AbstractHaplotype phase information in diploid organisms provides valuable information on human evolutionary history and may lead to the development of more efficient strategies to identify genetic variants that increase susceptibility to human diseases. Molecular haplotyping methods are labor‐intensive, low‐throughput, and very costly. Therefore, algorithms based on formal statistical theories were shown to be very effective and cost‐efficient for haplotype reconstruction. This review covers 1) population‐based haplotype inference methods: Clark's algorithm, expectation‐maximization (EM) algorithm, coalescence‐based algorithms (pseudo‐Gibbs sampler and perfect/imperfect phylogeny), and partition‐ligation algorithm implemented by a fully Bayesian model (Haplotyper) or by EM (PLEM); 2) family‐based haplotype inference methods; 3) the handling of genotype scoring uncertainties (i.e., genotyping errors and raw two‐dimensional genotype scatterplots) in inferring haplotypes; and 4) haplotype inference methods for pooled DNA samples. The advantages and limitations of each algorithm are discussed. By using simulations based on empirical data on the G6PD gene and TNFRSF5 gene, I demonstrate that different algorithms have different degrees of sensitivity to various extents of population diversities and genotyping error rates. Future development of statistical algorithms for addressing haplotype reconstruction will resort more and more to ideas based on combinatorial mathematics, graphical models, and machine learning, and they will have profound impacts on population genetics and genetic epidemiology with the advent of the human HapMap. © 2004 Wiley‐Liss, Inc.

Related Organizations
Keywords

Genetics, Population, Genotype, Haplotypes, Models, Genetic, Humans, Genetic Predisposition to Disease, Polymorphism, Single Nucleotide, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    143
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
143
Top 10%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!