Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genes Chromosomes an...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Genes Chromosomes and Cancer
Article . 2013 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

Upregulation of the ATR‐CHEK1 pathway in oral squamous cell carcinomas

Authors: Rahul A, Parikh; Leonard J, Appleman; Julie E, Bauman; Madhav, Sankunny; Dale W, Lewis; Anda, Vlad; Susanne M, Gollin;

Upregulation of the ATR‐CHEK1 pathway in oral squamous cell carcinomas

Abstract

The ATR‐CHEK1 pathway is upregulated and overactivated in Ataxia Telangiectasia (AT) cells, which lack functional ATM protein. Loss of ATM in AT confers radiosensitivity, although ATR‐CHEK1 pathway overactivation compensates, leads to prolonged G2 arrest after treatment with ionizing radiation (IR), and partially reverses the radiosensitivity. We observed similar upregulation of the ATR–CHEK1 pathway in a subset of oral squamous cell carcinoma (OSCC) cell lines with ATM loss. In the present study, we report copy number gain, amplification, or translocation of the ATR gene in 8 of 20 OSCC cell lines by FISH; whereas the CHEK1 gene showed copy number loss in 12 of 20 cell lines by FISH. Quantitative PCR showed overexpression of both ATR and CHEK1 in 7 of 11 representative OSCC cell lines. Inhibition of ATR or CHEK1 with their respective siRNAs resulted in increased sensitivity of OSCC cell lines to IR by the colony survival assay. siRNA‐mediated ATR or CHEK1 knockdown led to loss of G2 cell cycle accumulation and an increased sub‐G0 apoptotic cell population by flow cytometric analysis. In conclusion, the ATR‐CHEK1 pathway is upregulated in a subset of OSCC with distal 11q loss and loss of the G1 phase cell cycle checkpoint. The upregulated ATR‐CHEK1 pathway appears to protect OSCC cells from mitotic catastrophe by enhancing the G2 checkpoint. Knockdown of ATR and/or CHEK1 increases the sensitivity of OSCC cells to IR. These findings suggest that inhibition of the upregulated ATR–CHEK1 pathway may enhance the efficacy of ionizing radiation treatment of OSCC. © 2013 Wiley Periodicals, Inc.

Keywords

Chromosomes, Human, Pair 11, Gene Dosage, Ataxia Telangiectasia Mutated Proteins, Radiation Tolerance, Translocation, Genetic, Up-Regulation, G2 Phase Cell Cycle Checkpoints, Cell Line, Tumor, Gene Knockdown Techniques, Checkpoint Kinase 1, Carcinoma, Squamous Cell, Humans, Mouth Neoplasms, Chromosomes, Human, Pair 3, Protein Kinases, DNA Damage, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Average
Top 10%
bronze