
doi: 10.1002/for.918
AbstractAdaptive exponential smoothing methods allow a smoothing parameter to change over time, in order to adapt to changes in the characteristics of the time series. However, these methods have tended to produce unstable forecasts and have performed poorly in empirical studies. This paper presents a new adaptive method, which enables a smoothing parameter to be modelled as a logistic function of a user‐specified variable. The approach is analogous to that used to model the time‐varying parameter in smooth transition models. Using simulated data, we show that the new approach has the potential to outperform existing adaptive methods and constant parameter methods when the estimation and evaluation samples both contain a level shift or both contain an outlier. An empirical study, using the monthly time series from the M3‐Competition, gave encouraging results for the new approach. Copyright © 2004 John Wiley & Sons, Ltd.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 36 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
