Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Forecasti...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Forecasting
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multiple Seasonal Autoregressive Integrated Moving Average Models

Authors: Francesco Lisi; Matteo Grigoletto;

Multiple Seasonal Autoregressive Integrated Moving Average Models

Abstract

ABSTRACTMany empirical time series show periodic patterns. SARIMA models and exponential smoothing methods are classical approaches to account for seasonal dynamics. However, they allow to model just one periodic component, while several time series have multiple seasonality, with periodic components possibly tangled among them. To face this case, some seasonal‐trend decomposition methods have been proposed in the literature, for example, the TBATS model, the MSTL model, the ADAM model, and the Prophet model, while SARIMA models have been quite neglected. To fill this gap, in this work, we suggest a suitable generalization of the SARIMA model, called mSARIMA, able to account for multiple seasonality. First, we define the model, describe its characteristics, and propose a test for residual multiperiodic correlation. Then, we analyze the predictive performance by comparing the mSARIMA model with other approaches, namely, the TBATS, MSTL, ADAM, and Prophet models, under different kinds of seasonality. The results suggest that when seasonality has a stochastic nature, mSARIMA models are more effective in predicting the series. However, if seasonality is basically deterministic, then the model decomposition approach is more suitable. Finally, we provide two comparative forecasting applications for the 5‐min series of the number of calls handled by a large North American commercial bank and for the 10‐min traffic data on the eastbound lanes of the Ventura Highway in Los Angeles.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
hybrid