
doi: 10.1002/evan.21745
pmid: 30383910
AbstractRecent research has revealed clock‐like patterns of epigenetic change across the life span in humans. Models describing these epigenetic changes have been dubbed “epigenetic clocks,” and they can not only predict chronological age but also reveal biological age, which measures physiological homeostasis and deterioration over the life span. Comparative studies of the epigenetic clocks of different primate species are likely to provide insights into the evolution of life history schedules, as well as shed light on the physiological and genetic bases of aging and aging‐related diseases. Chronological age estimation using clock‐based calculators may also offer biological anthropologists a useful tool for applying to forensic and demographic studies.
Primates, Biological Clocks, Animals, Humans, Epigenesis, Genetic
Primates, Biological Clocks, Animals, Humans, Epigenesis, Genetic
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
