<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1002/ett.2509
ABSTRACTDistributed compressed sensing exploits the correlation among multiple signals to reduce the number of measurements required for recovery. In this paper, we propose a recovery algorithm for a type of joint sparsity model, where all signals share a common sparse component and each individual signal contains a sparse innovation component. Our approach iteratively removes the information of each component from the measurements and then performs sparse recovery. We provide analytical analysis to verify the advantage of the proposed algorithm over separate recovery, which is also confirmed by simulation results. Copyright © 2012 John Wiley & Sons, Ltd.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |