Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Earth Surface Proces...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Earth Surface Processes and Landforms
Article . 2024 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
OpenMETU
Article . 2024
License: CC BY NC ND
Data sources: OpenMETU
versions View all 2 versions
addClaim

Neogene drainage evolution of SW Anatolia (Türkiye): Integration of morphotectonics, drainage and denudation analyses

Authors: Pieter S. van Heiningen; Nuretdin Kaymakci;

Neogene drainage evolution of SW Anatolia (Türkiye): Integration of morphotectonics, drainage and denudation analyses

Abstract

AbstractThis study integrates denudation analysis with morphotectonic characteristics, facies associations and drainage analysis to investigate the landscape evolution of SW Anatolia. Age‐Elevation Relationship (AER) plots of published thermochronological data from drainage divides, valleys and preserved paleo‐geomorphological landscape remnants provide insight into the region's drainage evolution. Cooling and denudation events identify the timing of divide formation, windgap formation and divide breaching, which leads to watergap formation.We have subdivided SW Anatolia into distinct morphotectonic domains. Among these, the Gediz and Büyük Menderes faults and the Selimiye Shear Zone fragmented the Menderes Metamorphic Core Complex into three each of which experienced different cooling histories based on denudation analysis utilizing various low‐temperature thermochronometers.Hypsometric integral and channel profile analyses demonstrate significant variation in landscape maturity and drainage basin modifications over time. These analyses, combined with the interpretation and mapping of windgaps, watergaps and stream deflections, as well as the depositional environments of sediments and volcanic sequences, enable the reconstruction of drainage patterns from the early Miocene to Recent.During the middle Miocene, the Sakarya drainage basin dominated central and eastern SW Anatolia, with the Gediz drainage basin being a minor part of the Küçük Menderes basin. The Büyük Menderes drainage basin, in contrast, drained the southern portion of SW Anatolia, while the Bakırçay catchment extended into the northern Gediz basin. By the late Miocene, the Sakarya drainage basin had lost a significant portion of its hinterland to the Gediz basin and several newly isolated basins, while also capturing the Burdur and Beyşehir basins, along with the mid‐ and upstream sections of the Büyük Menderes basin, thereby reducing its area by two‐thirds. In the Pliocene, the Gediz drainage basin contracted by approximately 80%, while the Büyük Menderes basin expanded to absorb the Gediz and Tavas basins. During the Quaternary, the Büyük Menderes basin further shrank by around 60% as isolated basins formed in the east. Recent tectonic activity has led to the Gediz basin recapturing parts of its upstream area, while the Büyük Menderes basin regained previously isolated sections of the Gediz basin. The Dalaman and Eşençay basins also captured upstream isolated basins, while the Burdur basin was captured by the Aksu River, isolating the Beyşehir basin from Burdur.These episodes of drainage reorganization are driven by dynamic topography, influenced by slab‐edge processes and intensified by the westward escape of the Anatolian Block. The westward motion, combined with slab‐tear‐driven vertical movements, has led to substantial reconfiguration of the drainage networks in SW Anatolia over time.

Country
Turkey
Related Organizations
Keywords

Menderes Core complex, morphotectonics, denudation, age-elevation relationship, drainage analysis, thermo-chronology, SW Anatolia

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!