Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Electrophoresisarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Electrophoresis
Article . 2011 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Electrophoresis
Article . 2012
versions View all 3 versions
addClaim

Parallel single‐cell analysis microfluidic platform

Authors: van den Brink, Floris T.G.; Gool, Elmar; Frimat, Jean-Philippe; Bomer, Johan G.; van den Berg, Albert; Le Gac, Severine;

Parallel single‐cell analysis microfluidic platform

Abstract

AbstractWe report a PDMS microfluidic platform for parallel single‐cell analysis (PaSCAl) as a powerful tool to decipher the heterogeneity found in cell populations. Cells are trapped individually in dedicated pockets, and thereafter, a number of invasive or non‐invasive analysis schemes are performed. First, we report single‐cell trapping in a fast (2–5 min) and reproducible manner with a single‐cell capture yield of 85% using two cell lines (P3x63Ag8 and MCF‐7), employing a protocol which is scalable and easily amenable to automation. Following this, a mixed population of P3x63Ag8 and MCF‐7cells is stained in situ using the nucleic acid probe (Hoechst) and a phycoerythrin‐labeled monoclonal antibody directed at EpCAM present on the surface of the breast cancer cells MCF‐7 and absent on the myeloma cells P3x63Ag8 to illustrate the potential of the device to analyze cell population heterogeneity. Next, cells are porated in situ using chemicals in a reversible (digitonin) or irreversible way (lithium dodecyl sulfate). This is visualized by the transportation of fluorescent dyes through the membrane (propidium iodide and calcein). Finally, an electrical protocol is developed for combined cell permeabilization and electroosmotic flow (EOF)‐based extraction of the cell content. It is validated here using calcein‐loaded cells and visualized through the progressive recovery of calcein in the side channels, indicating successful retrieval of individual cell content.

Country
Netherlands
Related Organizations
Keywords

Singlecell analysis, Cell Membrane Permeability, Microfluidics, Parallelization, Intracellular Space, Reproducibility of Results, Cancer cell, Microfluidic Analytical Techniques, Population heterogeneity, Fluoresceins, Mice, SDG 3 - Good Health and Well-being, Cell Line, Tumor, Animals, Humans, Electroosmosis, Single-Cell Analysis, Fluorescent Dyes

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!