Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Electrophoresisarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Electrophoresis
Article . 2009 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
https://dx.doi.org/10.1184/r1/...
Other literature type . 2009
Data sources: Datacite
https://dx.doi.org/10.1184/r1/...
Other literature type . 2009
Data sources: Datacite
Electrophoresis
Article . 2009
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Difference gel electrophoresis

Authors: Kai Stühler; Susan R. Dowd; Jonathan S. Minden; Helmut E. Meyer;

Difference gel electrophoresis

Abstract

AbstractDifference gel electrophoresis (DIGE) was invented to circumvent the inherent variability of 2‐DE. This variability is a natural consequence of separating thousands of proteins over a large space, such as a 15×20 cm slab of polyacrylamide gel. The originators of 2‐DE envisioned being able to compare cancerous cells and normal cells to understand what makes these cells different. Gel‐to‐gel variability made this an extremely difficult task. We reasoned that if both samples could be run on the same gel, then the inherent variability would be obviated. Thus, we created matched sets of fluorescent dyes that allows one to compare two or three protein samples on a single gel. In the 12 years since the description of DIGE first appeared in Electrophoresis, this founding paper has been cited over 660 times. This review highlights some of the improvements and applications of DIGE. We hope these examples are illustrative of what has been done and where the field is headed.

Related Organizations
Keywords

Proteomics, FOS: Biological sciences, Animals, Humans, Proteins, Electrophoresis, Gel, Two-Dimensional, 69999 Biological Sciences not elsewhere classified, Fluorescent Dyes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    108
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
108
Top 10%
Top 10%
Top 1%
Related to Research communities
Cancer Research
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!