Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Electrophoresisarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Electrophoresis
Article . 2008 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Electrophoresis
Article . 2008
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Divergent flow isoelectric focusing

Authors: Karel, Slais;

Divergent flow isoelectric focusing

Abstract

AbstractContinuous‐flow isoelectric focusing (IEF) has the potential to be an important method in proteome analysis. The current devices do not fully use the advantages of IEF, because they do not utilize all its important features including changes in background conductivity during the focusing. A novel continuous‐flow IEF method has been developed based on planar divergent flow and control of local electric field by conductivity of electrode electrolytes. A hydrophilized polypropylene nonwoven fabric was used for creation of flow and electric manifold, making the assembled device cheap, flexible and easy to set up and operate. By using the colored low‐molecular‐weight pI markers we demonstrated much higher speed of focusing in the new designed channel in comparison with a channel based on currently used rectangular geometry. The developed divergent‐flow IEF combines the speed of micro flow channels with the separation efficiency and sample load capacity of preparative devices.

Related Organizations
Keywords

Equipment Design, Isoelectric Focusing, Rheology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!