Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Electrophoresisarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Electrophoresis
Article . 2008 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
https://doi.org/10.1109/nems.2...
Article . 2009 . Peer-reviewed
Data sources: Crossref
Electrophoresis
Article . 2008
DBLP
Conference object
Data sources: DBLP
versions View all 4 versions
addClaim

Microfluidic chip of fast DNA hybridization using denaturing and motion of nucleic acids

Authors: Yung-Chiang Chung; Yu-Cheng Lin; Chaung-Di Chueh; Chuan-You Ye; Li-Wei Lai; Wei-Chieh Liao;

Microfluidic chip of fast DNA hybridization using denaturing and motion of nucleic acids

Abstract

AbstractThis study presents the effect of fluidic temperatures and velocities on improving DNA hybridization. The efficiency of hybridization could be improved by introducing elevated temperature in the hot region and velocity in the cold region. Compared with the conventional methods, this hybridization microchip was able to increase the hybridization signal 4.6‐fold within 30 min. The 1.4‐kb single‐stranded target DNA was tested. The increasing tendency of the fluorescence intensity was apparent when the temperature was higher than 82°C, and the fluorescence intensity reached an asymptotic value at T >90°C. A mathematical model was proposed to relate the fluorescence intensity of DNA hybridization with the hot‐region temperature and the cold‐region velocity. Based on these results, the new hybridization chip with the processes of temperature and velocity differences will improve efficiency of DNA detection. The microchip combined with hot‐region temperature and cold‐region bulk flow velocity effects could provide additional efficiency in DNA hybridization.

Related Organizations
Keywords

Motion, Models, Chemical, Temperature, DNA, Single-Stranded, Nucleic Acid Hybridization, Equipment Design, Microfluidic Analytical Techniques, Nucleic Acid Denaturation, Fluorescence

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!