Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Electrophoresisarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Electrophoresis
Article . 2005 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Electrophoresis
Article . 2005
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Two‐dimensional gel isoelectric focusing

Authors: Miroslava, Stastná; Karel, Slais;

Two‐dimensional gel isoelectric focusing

Abstract

AbstractTwo‐dimensional gel isoelectric focusing (2‐D gel IEF) is presented as the combination of the same separation method used consecutively in two directions of the same gel. In this new method, after completion of IEF process in the first dimension the gel was cut into the separate strips, each containing selected analytes together with the appropriate part of the original broad pH gradient, and the strips were rotated by 90° (with regard to the first IEF) and left to diffuse overnight. After diffusion the strips were subjected to the second IEF. During the second IEF, the corresponding narrow part of pH gradient in each strip was restored again, however, now along the strip. The progress of the separation process can be monitored visually by using colored low‐molecular‐weight isoelectric point (pI) markers loaded into the gel simultaneously with proteins. The unique properties of IEF, focusing and resolution power were enhanced by using the same technique twice. Two forms of β‐lactoglobulin (pI values 5.14 and 5.31, respectively) nonseparated in the first IEF were successfully separated in the second dimension at relatively low voltage (330 V) with the resolution power comparable to the high‐resolution gels requiring the high voltage during the run and long separation time. Glucose oxidase loaded as diluted solution into ten positions across the gel was finally focused into a single band during 2‐D gel IEF. Since the first and second IEF are carried out on the same gel, no losses and contamination of analyte occur. The suggested method can be used for separation/fractionation of complex biological mixtures, similarly as other multidimensional separation techniques applied in proteomics, and can be followed by further processing, e.g., mass spectrometry analysis. The focusing properties of IEF could be useful especially in separation of mixtures, where components are at low concentration levels.

Related Organizations
Keywords

Proteins, Electrophoresis, Gel, Two-Dimensional, Hydrogen-Ion Concentration, Isoelectric Focusing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!