
AbstractTwo versions of the free‐radical thiol–ene addition, a photoinduced reaction in the presence of 2,2‐dimethoxy‐2‐phenylacetophenone, and a UV‐light‐free hydrothiolation using triethylborane as the initiator, were studied for the conjugation of fluorescent dithiomaleimide to biologically active compounds. A dithiomaleimide derivative bearing a vinyl ether functionality was prepared as the alkene partner. This was coupled with a range of thiols, including thiosugars, captopril, N‐acetyl‐L‐cysteine, and sodium 2‐sulfonatoethanethiol. The Et3B‐initiated method was superior to the photoinduced reaction, as it minimized decomposition of the sensitive maleimide group. The vinyl ether derivative and the addition products showed green light emission in tetrahydrofuran. The compounds all showed almost identical absorption and emission spectra, proving that the structure of the thiols has no influence on the fluorescence properties of the maleimide part of the molecules. The hydrothiolation products showed relatively high quantum yields.
QD04 Organic chemistry / szerves kémia
QD04 Organic chemistry / szerves kémia
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
