Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
European Journal of Immunology
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
European Journal of Immunology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2019
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Lirias
Article . 2020
License: CC BY
Data sources: Lirias
versions View all 5 versions
addClaim

Deoxyguanosine is a TLR7 agonist

Authors: Davenne, Tamara; Bridgeman, Anne; Rigby, Rachel E.; Rehwinkel, Jan;

Deoxyguanosine is a TLR7 agonist

Abstract

Abstract Toll‐like receptor 7 (TLR7) is an innate immune sensor for single‐strand RNA (ssRNA). Recent structural analysis revealed that TLR7 has an additional binding site for nucleosides such as guanosine, and is activated when both guanosine and ssRNA bind. The nucleoside binding site also accommodates imidazoquinoline derivatives such as R848, which activate TLR7 in the absence of ssRNA. Here, we report that deoxyguanosine (dG) triggered cytokine production in murine bone marrow derived macrophages and plasmacytoid dendritic cells, as well as in human peripheral blood mononuclear cells, including type I interferons and pro‐inflammatory factors such as TNF and IL‐6. This signalling activity of dG was dependent on TLR7 and its adaptor MyD88 and did not require amplification via the type I interferon receptor. dG‐triggered cytokine production required endosomal maturation but did not depend on the concurrent provision of RNA. We conclude that dG induces an inflammatory response through TLR7 and propose that dG is an RNA‐independent TLR7 agonist.

Countries
United Kingdom, Belgium
Related Organizations
Keywords

ssRNA, Immunology, R848, TOLL-LIKE-RECEPTOR-7, Mice, deoxyguanosine, Animals, Humans, TLR7, Innate immunity, Inflammation, Science & Technology, RECEPTOR 7, Macrophages, RECOGNITION, Deoxyguanosine, 3204 Immunology, Mice, Inbred C57BL, guanosine, Toll-Like Receptor 7, 1107 Immunology, Leukocytes, Mononuclear, RNA, Life Sciences & Biomedicine

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%
Green
hybrid