Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
European Journal of Immunology
Article . 2009 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

CD46‐induced human Treg enhance B‐cell responses

Authors: Fuchs, Anja; Atkinson, John P.; Fremeaux-Bacchi, Veronique; Kemper, Claudia;

CD46‐induced human Treg enhance B‐cell responses

Abstract

AbstractRegulatory CD4+ T cells (Treg) are important modulators of the immune response. Different types of Treg have been identified based on whether they are thymically derived (natural Treg) or induced in the periphery (adaptive Treg). We recently reported on an adaptive Treg phenotype that can be induced by the concomitant stimulation of human CD4+ T cells through CD3 and the membrane complement regulator CD46. These complement (CD46)‐induced regulatory T cells (cTreg) potently inhibit bystander T‐cell proliferation through high‐level secretion of IL‐10. In addition, cTreg express granzyme B and exhibit cytotoxic effects toward activated effector T cells. Here, we analyzed the effect of cTreg on B‐cell functions in a co‐culture system. We found that cTreg enhance B‐cell Ab production. This B‐cell support is dependent on cell/cell contact as well as cTreg‐derived IL‐10. In addition, we show that T cells from a CD46‐deficient patient are not capable of promoting B‐cell responses, whereas CD46‐deficient B cells have no intrinsic defect in Ig production. This finding may relate to a subset of CD46‐deficient patients, who present with common variable immunodeficiency. Thus, the lack of cTreg function in optimizing B‐cell responses could explain why some CD46‐deficient patients develop common variable immunodeficiency.

Country
United Kingdom
Keywords

B-Lymphocytes, 610, Enzyme-Linked Immunosorbent Assay, Cell Communication, Cell Separation, Flow Cytometry, Lymphocyte Activation, T-Lymphocytes, Regulatory, Coculture Techniques, Interleukin-10, Membrane Cofactor Protein, Common Variable Immunodeficiency, T-Lymphocyte Subsets, Antibody Formation, Humans

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Top 10%
bronze