
doi: 10.1002/dneu.23003
ABSTRACT Prenatal stress, mediated by elevated glucocorticoid (GC) levels, is a relevant modulator of fetal brain development and a known risk factor for neurodevelopmental disorders. Using the avian embryo as a vertebrate model, we injected corticosterone into the yolk on embryonic day 6 (E6) and assessed neurodevelopmental outcomes at day 14 (E14). Through deep proteomic profiling — quantifying over 6500 proteins — we uncovered a robust molecular signature of stress‐induced disruption. Key myelin‐associated proteins (myelin basic protein [MBP], PLP1, 2′,3′‐cyclic‐nucleotide 3′‐phosphodiesterase [CNP]) were markedly downregulated, indicating impaired oligodendrocyte maturation. These proteomic shifts were corroborated by immunohistochemistry and qPCR. Pathway‐level analysis pointed to altered MAPK and AKT signaling as putative mediators of the observed phenotype. Our findings mirror previous mammalian data while highlighting the avian model's unique suitability for mechanistic dissection of prenatal stress effects. This study offers new insight into how early GC exposure impairs glial development, with broader implications for understanding the molecular origins of stress‐linked brain vulnerability.
Research Article
Research Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
