Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Digital & Analog Cabled Systems
Article . 2018 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

Multiplicative based path loss model

Authors: Bülent Bilgehan; Stephen Ojo;

Multiplicative based path loss model

Abstract

SummaryWe present a newly introduced multiplicative based path loss model for the wireless channel. The model verified with experimental data at 2100 MHz collected across Cyprus in 6 existing microcells in urban, suburban, and rural areas. The new method uses the multiplicative least square fitting model that relates the decibel path loss to the distance with parameterized exponential‐type basis. The parameters are extracted from the real‐time measured values. The resulting path loss models apply to single‐cell arrangement with base antenna heights from 25 to 45 m and base‐to‐terminal distances from 0.1 to 2 km. The newly generated multiplicative base path loss model tested and compared with the best existing suitable models. The validity of the new model verified using relative error analysis. The new model can be used to determine accurately the path loss for microcells in the wireless coverage area as well as in the applications of data analysis.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!